\(\int \frac {x (a+b \text {arccosh}(c x))}{(d+e x^2)^2} \, dx\) [499]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 113 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=-\frac {a+b \text {arccosh}(c x)}{2 e \left (d+e x^2\right )}+\frac {b c \sqrt {-1+c^2 x^2} \text {arctanh}\left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{2 \sqrt {d} e \sqrt {c^2 d+e} \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

1/2*(-a-b*arccosh(c*x))/e/(e*x^2+d)+1/2*b*c*arctanh(x*(c^2*d+e)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))*(c^2*x^2-1)^(
1/2)/e/d^(1/2)/(c^2*d+e)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {5957, 533, 385, 214} \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\frac {b c \sqrt {c^2 x^2-1} \text {arctanh}\left (\frac {x \sqrt {c^2 d+e}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{2 \sqrt {d} e \sqrt {c x-1} \sqrt {c x+1} \sqrt {c^2 d+e}}-\frac {a+b \text {arccosh}(c x)}{2 e \left (d+e x^2\right )} \]

[In]

Int[(x*(a + b*ArcCosh[c*x]))/(d + e*x^2)^2,x]

[Out]

-1/2*(a + b*ArcCosh[c*x])/(e*(d + e*x^2)) + (b*c*Sqrt[-1 + c^2*x^2]*ArcTanh[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[
-1 + c^2*x^2])])/(2*Sqrt[d]*e*Sqrt[c^2*d + e]*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 533

Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_)*((a2_) + (b2_.)*(x_)^(non2_.))^(
p_), x_Symbol] :> Dist[(a1 + b1*x^(n/2))^FracPart[p]*((a2 + b2*x^(n/2))^FracPart[p]/(a1*a2 + b1*b2*x^n)^FracPa
rt[p]), Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x] && EqQ[
non2, n/2] && EqQ[a2*b1 + a1*b2, 0] &&  !(EqQ[n, 2] && IGtQ[q, 0])

Rule 5957

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcCosh[c*x])/(2*e*(p + 1))), x] - Dist[b*(c/(2*e*(p + 1))), Int[(d + e*x^2)^(p + 1)/(Sqrt[1 + c*x]*
Sqrt[-1 + c*x]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {a+b \text {arccosh}(c x)}{2 e \left (d+e x^2\right )}+\frac {(b c) \int \frac {1}{\sqrt {-1+c x} \sqrt {1+c x} \left (d+e x^2\right )} \, dx}{2 e} \\ & = -\frac {a+b \text {arccosh}(c x)}{2 e \left (d+e x^2\right )}+\frac {\left (b c \sqrt {-1+c^2 x^2}\right ) \int \frac {1}{\sqrt {-1+c^2 x^2} \left (d+e x^2\right )} \, dx}{2 e \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {a+b \text {arccosh}(c x)}{2 e \left (d+e x^2\right )}+\frac {\left (b c \sqrt {-1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{d-\left (c^2 d+e\right ) x^2} \, dx,x,\frac {x}{\sqrt {-1+c^2 x^2}}\right )}{2 e \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {a+b \text {arccosh}(c x)}{2 e \left (d+e x^2\right )}+\frac {b c \sqrt {-1+c^2 x^2} \text {arctanh}\left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{2 \sqrt {d} e \sqrt {c^2 d+e} \sqrt {-1+c x} \sqrt {1+c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.09 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=-\frac {\frac {a}{d+e x^2}+\frac {b \text {arccosh}(c x)}{d+e x^2}-\frac {b c \sqrt {-1+c x} \sqrt {1+c x} \arctan \left (\frac {\sqrt {-c^2 d-e} x}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{\sqrt {d} \sqrt {-c^2 d-e} \sqrt {-1+c^2 x^2}}}{2 e} \]

[In]

Integrate[(x*(a + b*ArcCosh[c*x]))/(d + e*x^2)^2,x]

[Out]

-1/2*(a/(d + e*x^2) + (b*ArcCosh[c*x])/(d + e*x^2) - (b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTan[(Sqrt[-(c^2*d) -
 e]*x)/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])/(Sqrt[d]*Sqrt[-(c^2*d) - e]*Sqrt[-1 + c^2*x^2]))/e

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(398\) vs. \(2(96)=192\).

Time = 7.56 (sec) , antiderivative size = 399, normalized size of antiderivative = 3.53

method result size
parts \(-\frac {a}{2 e \left (e \,x^{2}+d \right )}+\frac {b \left (-\frac {c^{4} \operatorname {arccosh}\left (c x \right )}{2 e \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {c^{4} \sqrt {c x -1}\, \sqrt {c x +1}\, \left (\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x -\sqrt {-c^{2} d e}}\right ) c^{2} d -\ln \left (-\frac {2 \left (-\sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +\sqrt {-c^{2} d e}\, c x +e \right )}{e c x +\sqrt {-c^{2} d e}}\right ) c^{2} d +\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x -\sqrt {-c^{2} d e}}\right ) e -\ln \left (-\frac {2 \left (-\sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +\sqrt {-c^{2} d e}\, c x +e \right )}{e c x +\sqrt {-c^{2} d e}}\right ) e \right )}{4 \sqrt {c^{2} x^{2}-1}\, \left (\sqrt {-c^{2} d e}+e \right ) \left (-\sqrt {-c^{2} d e}+e \right ) \sqrt {-c^{2} d e}\, \sqrt {-\frac {c^{2} d +e}{e}}}\right )}{c^{2}}\) \(399\)
derivativedivides \(\frac {-\frac {a \,c^{4}}{2 e \left (c^{2} e \,x^{2}+c^{2} d \right )}+b \,c^{4} \left (-\frac {\operatorname {arccosh}\left (c x \right )}{2 e \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x -\sqrt {-c^{2} d e}}\right ) c^{2} d -\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e -2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x +\sqrt {-c^{2} d e}}\right ) c^{2} d +\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x -\sqrt {-c^{2} d e}}\right ) e -\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e -2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x +\sqrt {-c^{2} d e}}\right ) e \right )}{4 \sqrt {c^{2} x^{2}-1}\, \left (\sqrt {-c^{2} d e}+e \right ) \left (-\sqrt {-c^{2} d e}+e \right ) \sqrt {-c^{2} d e}\, \sqrt {-\frac {c^{2} d +e}{e}}}\right )}{c^{2}}\) \(411\)
default \(\frac {-\frac {a \,c^{4}}{2 e \left (c^{2} e \,x^{2}+c^{2} d \right )}+b \,c^{4} \left (-\frac {\operatorname {arccosh}\left (c x \right )}{2 e \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x -\sqrt {-c^{2} d e}}\right ) c^{2} d -\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e -2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x +\sqrt {-c^{2} d e}}\right ) c^{2} d +\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e +2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x -\sqrt {-c^{2} d e}}\right ) e -\ln \left (\frac {2 \sqrt {-\frac {c^{2} d +e}{e}}\, \sqrt {c^{2} x^{2}-1}\, e -2 \sqrt {-c^{2} d e}\, c x -2 e}{e c x +\sqrt {-c^{2} d e}}\right ) e \right )}{4 \sqrt {c^{2} x^{2}-1}\, \left (\sqrt {-c^{2} d e}+e \right ) \left (-\sqrt {-c^{2} d e}+e \right ) \sqrt {-c^{2} d e}\, \sqrt {-\frac {c^{2} d +e}{e}}}\right )}{c^{2}}\) \(411\)

[In]

int(x*(a+b*arccosh(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*a/e/(e*x^2+d)+b/c^2*(-1/2*c^4/e/(c^2*e*x^2+c^2*d)*arccosh(c*x)-1/4*c^4*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(ln(2*
((-(c^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1/2)))*c^2*d-ln(-2*(-(-(c
^2*d+e)/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2)))*c^2*d+ln(2*((-(c^2*d+e)
/e)^(1/2)*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x-e)/(e*c*x-(-c^2*d*e)^(1/2)))*e-ln(-2*(-(-(c^2*d+e)/e)^(1/2)
*(c^2*x^2-1)^(1/2)*e+(-c^2*d*e)^(1/2)*c*x+e)/(e*c*x+(-c^2*d*e)^(1/2)))*e)/(c^2*x^2-1)^(1/2)/((-c^2*d*e)^(1/2)+
e)/(-(-c^2*d*e)^(1/2)+e)/(-c^2*d*e)^(1/2)/(-(c^2*d+e)/e)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 237 vs. \(2 (93) = 186\).

Time = 0.28 (sec) , antiderivative size = 537, normalized size of antiderivative = 4.75 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\left [-\frac {2 \, a c^{2} d^{2} - 2 \, {\left (b c^{2} d e + b e^{2}\right )} x^{2} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + 2 \, a d e - {\left (b c e x^{2} + b c d\right )} \sqrt {c^{2} d^{2} + d e} \log \left (-\frac {2 \, c^{2} d^{2} - {\left (4 \, c^{4} d^{2} + 4 \, c^{2} d e + e^{2}\right )} x^{2} + d e - 2 \, \sqrt {c^{2} d^{2} + d e} {\left ({\left (2 \, c^{3} d + c e\right )} x^{2} - c d\right )} - 2 \, \sqrt {c^{2} x^{2} - 1} {\left (\sqrt {c^{2} d^{2} + d e} {\left (2 \, c^{2} d + e\right )} x + 2 \, {\left (c^{3} d^{2} + c d e\right )} x\right )}}{e x^{2} + d}\right ) - 2 \, {\left (b c^{2} d^{2} + b d e + {\left (b c^{2} d e + b e^{2}\right )} x^{2}\right )} \log \left (-c x + \sqrt {c^{2} x^{2} - 1}\right )}{4 \, {\left (c^{2} d^{3} e + d^{2} e^{2} + {\left (c^{2} d^{2} e^{2} + d e^{3}\right )} x^{2}\right )}}, -\frac {a c^{2} d^{2} - {\left (b c^{2} d e + b e^{2}\right )} x^{2} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + a d e - {\left (b c e x^{2} + b c d\right )} \sqrt {-c^{2} d^{2} - d e} \arctan \left (\frac {\sqrt {-c^{2} d^{2} - d e} \sqrt {c^{2} x^{2} - 1} e x - \sqrt {-c^{2} d^{2} - d e} {\left (c e x^{2} + c d\right )}}{c^{2} d^{2} + d e}\right ) - {\left (b c^{2} d^{2} + b d e + {\left (b c^{2} d e + b e^{2}\right )} x^{2}\right )} \log \left (-c x + \sqrt {c^{2} x^{2} - 1}\right )}{2 \, {\left (c^{2} d^{3} e + d^{2} e^{2} + {\left (c^{2} d^{2} e^{2} + d e^{3}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(x*(a+b*arccosh(c*x))/(e*x^2+d)^2,x, algorithm="fricas")

[Out]

[-1/4*(2*a*c^2*d^2 - 2*(b*c^2*d*e + b*e^2)*x^2*log(c*x + sqrt(c^2*x^2 - 1)) + 2*a*d*e - (b*c*e*x^2 + b*c*d)*sq
rt(c^2*d^2 + d*e)*log(-(2*c^2*d^2 - (4*c^4*d^2 + 4*c^2*d*e + e^2)*x^2 + d*e - 2*sqrt(c^2*d^2 + d*e)*((2*c^3*d
+ c*e)*x^2 - c*d) - 2*sqrt(c^2*x^2 - 1)*(sqrt(c^2*d^2 + d*e)*(2*c^2*d + e)*x + 2*(c^3*d^2 + c*d*e)*x))/(e*x^2
+ d)) - 2*(b*c^2*d^2 + b*d*e + (b*c^2*d*e + b*e^2)*x^2)*log(-c*x + sqrt(c^2*x^2 - 1)))/(c^2*d^3*e + d^2*e^2 +
(c^2*d^2*e^2 + d*e^3)*x^2), -1/2*(a*c^2*d^2 - (b*c^2*d*e + b*e^2)*x^2*log(c*x + sqrt(c^2*x^2 - 1)) + a*d*e - (
b*c*e*x^2 + b*c*d)*sqrt(-c^2*d^2 - d*e)*arctan((sqrt(-c^2*d^2 - d*e)*sqrt(c^2*x^2 - 1)*e*x - sqrt(-c^2*d^2 - d
*e)*(c*e*x^2 + c*d))/(c^2*d^2 + d*e)) - (b*c^2*d^2 + b*d*e + (b*c^2*d*e + b*e^2)*x^2)*log(-c*x + sqrt(c^2*x^2
- 1)))/(c^2*d^3*e + d^2*e^2 + (c^2*d^2*e^2 + d*e^3)*x^2)]

Sympy [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \]

[In]

integrate(x*(a+b*acosh(c*x))/(e*x**2+d)**2,x)

[Out]

Integral(x*(a + b*acosh(c*x))/(d + e*x**2)**2, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x*(a+b*arccosh(c*x))/(e*x^2+d)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

[In]

integrate(x*(a+b*arccosh(c*x))/(e*x^2+d)^2,x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x/(e*x^2 + d)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \text {arccosh}(c x))}{\left (d+e x^2\right )^2} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

[In]

int((x*(a + b*acosh(c*x)))/(d + e*x^2)^2,x)

[Out]

int((x*(a + b*acosh(c*x)))/(d + e*x^2)^2, x)